主流的人臉檢測方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法。人臉檢測過程中使用Adaboost算法挑選出一些能代表人臉的矩形特征(弱分類器),按照加權(quán)投票的方式將弱分類器構(gòu)造為一個(gè)強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個(gè)級(jí)聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測速度。
一般來說,人臉識(shí)別系統(tǒng)包括圖像攝取、人臉定位、圖像預(yù)處理、以及人臉識(shí)別(身份確認(rèn)或者身份查找)。系統(tǒng)輸入一般是一張或者一系列含有未確定身份的人臉圖像,以及人臉數(shù)據(jù)庫中的若干已知身份的人臉圖象或者相應(yīng)的編碼,而其輸出則是一系列相似度得分,表明待識(shí)別的人臉的身份。
人臉的外形很不穩(wěn)定,人可以通過臉部的變化產(chǎn)生很多表情,而在不同觀察角度,人臉的視覺圖像也相差很大,另外,人臉識(shí)別還受光照條件(例如白天和夜晚,室內(nèi)和室外等)、人臉的很多遮蓋物(例如口罩、墨鏡、頭發(fā)、胡須等)、年齡等多方面因素的影響。
人臉識(shí)別主要用于身份識(shí)別。由于視頻監(jiān)控正在快速普及,眾多的視頻監(jiān)控應(yīng)用迫切需要一種遠(yuǎn)距離、用戶非配合狀態(tài)下的快速身份識(shí)別技術(shù),以求遠(yuǎn)距離快速確認(rèn)人員身份,實(shí)現(xiàn)智能預(yù)警。人臉識(shí)別技術(shù)無疑是佳的選擇,采用快速人臉檢測技術(shù)可以從監(jiān)控視頻圖象中實(shí)時(shí)查找人臉,并與人臉數(shù)據(jù)庫進(jìn)行實(shí)時(shí)比對(duì),從而實(shí)現(xiàn)快速身份識(shí)別。
人臉識(shí)別被認(rèn)為是生物特征識(shí)別領(lǐng)域甚至人工智能領(lǐng)域困難的研究課題之一。人臉識(shí)別的困難主要是人臉作為生物特征的特點(diǎn)所帶來的。不同個(gè)體之間的區(qū)別不大,所有的人臉的結(jié)構(gòu)都相似,甚至人臉器官的結(jié)構(gòu)外形都很相似。這樣的特點(diǎn)對(duì)于利用人臉進(jìn)行定位是有利的,但是對(duì)于利用人臉區(qū)分人類個(gè)體是不利的。
人臉自動(dòng)對(duì)焦和笑臉快門技術(shù):是面部捕捉。它根據(jù)人的頭部的部位進(jìn)行判定,確定頭部,然后判斷眼睛和嘴巴等頭部特征,通過特征庫的比對(duì),確認(rèn)是人面部,完成面部捕捉。然后以人臉為焦點(diǎn)進(jìn)行自動(dòng)對(duì)焦,可以大大的提升拍出照片的清晰度。 笑臉快門技術(shù)就是在人臉識(shí)別的基礎(chǔ)上,完成了面部捕捉,然后開始判斷嘴的上彎程度和眼的下彎程度,來判斷是不是笑了。以上所有的捕捉和比較都是在對(duì)比特征庫的情況下完成的,所以特征庫是基礎(chǔ),里面有各種典型的面部和笑臉特征數(shù)據(jù)。